



## Responses of coastal processes to multiple drivers in the Baltic Sea

#### Tarmo Soomere

Wave Engineering Laboratory Department of Cybernetics, School of Science Department of Civil Engineering and Architecture, School of Engineering Tallinn University of Technology









## Visible by naked eye:

## Baltic Sea coasts under pressure



Southern coast of Saaremaa Eroding Järve beach, Saaremaa, 30.04.2006

### Gulf of Riga



## The reason to worry



Rapid coastal retreat along several eastern Baltic Sea coasts since the 1990s: 20





Baltic Earth workshop Multiple drivers Tallinn,





- Strong waves
  - Unfortunate approach angle
- High water level
- Finer sediment available
- >Unprotected sediment
  - No ice cover, mangrove forest, reed field or similar



#### Baltic Sea wave climate: intermittent TÜ1918 $\geq$ ~ 1% of the total annual energy arrives within 170-200 days $\geq$ ~ 60 % of the annual energy arrives within 20 days ~30 % of the energy: ~3-4 days $10^{2}$ 100 80 Cumulative wave energy flux, % 60 **10**<sup>1</sup> 40 360 350 355 365 10<sup>0</sup> 10 50 100 150 200 250 300 350 0 Days

Soomere, Eelsalu 2014, Renewable Energy

WAVE ENGINEERING

A simple consequence from intermittency (of wave fields) and geometry (of the coast)



Evolution of the Baltic Sea shores is a step-like process

> A few events of rapid changes

when strong waves arrive from a specific direction during high water level events

Most of the time: very slow changes

#### Require high-resolution measurements to detect





ГТÜ1918





The problem (e.g. Suursaar and Sooäär 2007; Suursaar et al. 2015):
extremely high sea level values (e.g. at Pärnu)
which statistically appear as unpredictable outliers
but are nevertheless caused by 'normal' storms

## Water volume of the Baltic Sea varies



Specific feature of the Baltic Sea

- Events of increase in the water volume of the entire sea
  - High water level events over a few weeks, ~1 m
- Different mechanisms: work basically independently
- > Challenge: single out the response to each driver



## Wave approach direction: usually directly towards the coast

# Wave approach direction in the Baltic Sea: often under large angle with respect to the coast









- Consequences of large approach angle
- Sensitivity with respect to particular approach direction
- Comparatively large sediment transport rate
  - Proportional to sin(2xangle)

Classic cut-and-fill process does not close the loop

- Mobile sediment moved along the shore to another location
- Small proportion & intensity of swells: natural beach refill slow or missing

## The properties of single storms and the timing of storms in sequences become decisive

### Valgerand, Pärnu Bay, Estonia: it seems that there is enough sand



The appearance of coasts mirrors the wave regime



## In reality, only thin sand sheet covers clay and pebbles







## Asymmetry of sediment flux



- Often limited by the availability of fine sediment
  - Overall sediment deficit on the Baltic Sea shores
  - Real sediment flux only a few % of the potential flux
  - Slow accumulation in flux convergence areas
- Accumulation features may be easily destroyed
  - Sediment transport in single storms from unexpected direction can be much more intense

#### Again:

The properties of single storms and the timing of storms in sequences become decisive



#### The impact of ice Ristna (Ristinina) harbour April 2006

#### A problem for navigation

#### Damaging houses (Komarovo, Neva Bay, 2008)





The problem for sedimentary beaches:



No ice == no protection against severe waves and hight water level

Storm surges much higher than for ice-covered sea
 Wave energy reaches mobile sediment

Particularly dangerous: high surge + strong waves + mobile sand

(Komarovo, Neva Bight, 29 October 2006

11 January 2007) Ryabchuk et al. 2009, 2011





NEERING

# Many Baltic Sea shores should be very vulnerable:



- Small amount of sand
- Young coasts
- Open to hydrodynamic loads
- Overall fine sediment deficit

#### Still they are explicitly or implicitly stabilized by

- ➢ Short waves → surf zone narrow
- Geometry: stable sections in bayheads
- Infrequent hits by storms
- Postglacial rebound ~= sand accretion

Consequence:

Almost equilibrium state of many beaches

with very small amount of sand



#### Thank you for your attention